Dynamic Exoskeleton : Mechanical Design of a Human Exoskeleton to Enhance Maximum Dynamic Performance
نویسندگان
چکیده
An exoskeleton was designed with the primary goal of enhancing the maximum dynamic capability of a human, thus allowing the user to run faster, jump higher, or traverse challenging terrain. This paper presents the mechanical design of an alpha prototype with a focus on increasing the maximum vertical jump height of a human. High torque motors were constrained to the body with two degrees of freedom using carbon fiber, aluminum, and other lightweight materials. The exoskeleton actuates the hip joint by comfortably providing force to three points on the body. Human testing showed a maximum increase in jump height of 13%. Thesis Supervisor: Sangbae Kim Tide: Associate Professor of Mechanical Engineering
منابع مشابه
Effect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance
Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...
متن کاملThe effect of using cervical exoskeleton on the neck and shoulder muscles electrical activity during overhead work
Introduction: The use of exoskeletons as a new ergonomics intervention to reduce musculoskeletal disorders risk factors and increase human performance has emerged in the fourth-generation industrial revolution. The aim of this study was to assess the cervical exoskeleton effect on the neck and shoulder muscles electrical activity. Material and Methods: In this experimental study, 14 male parti...
متن کاملKinematic and Dynamic Analysis of a Lower Limb Exoskeleton
This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton. Keywords—Dynamic Analysis...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملMechanical Design of a Hybrid Leg Exoskeleton to Augment Load-Carrying for Walking
An innovative lower extremity exoskeleton, SJTU-EX, is demonstrated in Shanghai JiaoTong University, which mainly aims to help soldiers and workers to support a payload in motion. This paper summarizes the mechanical design of SJTU-EX. Each pseudo-anthropomorphic leg of SJTU-EX has four active joints and two passive joints, and the joint ranges are optimized in consideration of both safety fact...
متن کامل